1=(8k+1)(4k^2+4k+1)

Simple and best practice solution for 1=(8k+1)(4k^2+4k+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=(8k+1)(4k^2+4k+1) equation:


Simplifying
1 = (8k + 1)(4k2 + 4k + 1)

Reorder the terms:
1 = (1 + 8k)(4k2 + 4k + 1)

Reorder the terms:
1 = (1 + 8k)(1 + 4k + 4k2)

Multiply (1 + 8k) * (1 + 4k + 4k2)
1 = (1(1 + 4k + 4k2) + 8k * (1 + 4k + 4k2))
1 = ((1 * 1 + 4k * 1 + 4k2 * 1) + 8k * (1 + 4k + 4k2))
1 = ((1 + 4k + 4k2) + 8k * (1 + 4k + 4k2))
1 = (1 + 4k + 4k2 + (1 * 8k + 4k * 8k + 4k2 * 8k))
1 = (1 + 4k + 4k2 + (8k + 32k2 + 32k3))

Reorder the terms:
1 = (1 + 4k + 8k + 4k2 + 32k2 + 32k3)

Combine like terms: 4k + 8k = 12k
1 = (1 + 12k + 4k2 + 32k2 + 32k3)

Combine like terms: 4k2 + 32k2 = 36k2
1 = (1 + 12k + 36k2 + 32k3)

Add '-1' to each side of the equation.
1 + -1 = 1 + 12k + 36k2 + -1 + 32k3

Combine like terms: 1 + -1 = 0
0 = 1 + 12k + 36k2 + -1 + 32k3

Reorder the terms:
0 = 1 + -1 + 12k + 36k2 + 32k3

Combine like terms: 1 + -1 = 0
0 = 0 + 12k + 36k2 + 32k3
0 = 12k + 36k2 + 32k3

Solving
0 = 12k + 36k2 + 32k3

Solving for variable 'k'.
Remove the zero:
-12k + -36k2 + -32k3 = 12k + 36k2 + 32k3 + -12k + -36k2 + -32k3

Reorder the terms:
-12k + -36k2 + -32k3 = 12k + -12k + 36k2 + -36k2 + 32k3 + -32k3

Combine like terms: 12k + -12k = 0
-12k + -36k2 + -32k3 = 0 + 36k2 + -36k2 + 32k3 + -32k3
-12k + -36k2 + -32k3 = 36k2 + -36k2 + 32k3 + -32k3

Combine like terms: 36k2 + -36k2 = 0
-12k + -36k2 + -32k3 = 0 + 32k3 + -32k3
-12k + -36k2 + -32k3 = 32k3 + -32k3

Combine like terms: 32k3 + -32k3 = 0
-12k + -36k2 + -32k3 = 0

Factor out the Greatest Common Factor (GCF), '-4k'.
-4k(3 + 9k + 8k2) = 0

Ignore the factor -4.

Subproblem 1

Set the factor 'k' equal to zero and attempt to solve: Simplifying k = 0 Solving k = 0 Move all terms containing k to the left, all other terms to the right. Simplifying k = 0

Subproblem 2

Set the factor '(3 + 9k + 8k2)' equal to zero and attempt to solve: Simplifying 3 + 9k + 8k2 = 0 Solving 3 + 9k + 8k2 = 0 Begin completing the square. Divide all terms by 8 the coefficient of the squared term: Divide each side by '8'. 0.375 + 1.125k + k2 = 0 Move the constant term to the right: Add '-0.375' to each side of the equation. 0.375 + 1.125k + -0.375 + k2 = 0 + -0.375 Reorder the terms: 0.375 + -0.375 + 1.125k + k2 = 0 + -0.375 Combine like terms: 0.375 + -0.375 = 0.000 0.000 + 1.125k + k2 = 0 + -0.375 1.125k + k2 = 0 + -0.375 Combine like terms: 0 + -0.375 = -0.375 1.125k + k2 = -0.375 The k term is 1.125k. Take half its coefficient (0.5625). Square it (0.31640625) and add it to both sides. Add '0.31640625' to each side of the equation. 1.125k + 0.31640625 + k2 = -0.375 + 0.31640625 Reorder the terms: 0.31640625 + 1.125k + k2 = -0.375 + 0.31640625 Combine like terms: -0.375 + 0.31640625 = -0.05859375 0.31640625 + 1.125k + k2 = -0.05859375 Factor a perfect square on the left side: (k + 0.5625)(k + 0.5625) = -0.05859375 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

k = {0}

See similar equations:

| 4c^3+8c^2-252c=0 | | x^4-4x^3+x^2+6x=0 | | 2y-4=16-3y | | 5x+3+x=2+2x-3 | | 6x+4y=5 | | 5(x-3)-2(3x+1)=4(x+1)-51 | | ln(3x)=ln(2x)-2 | | 3(2x+7)+2(x+4)=5(x-6)+9x+5 | | r^2+6r-16= | | 2x+y+z=10 | | 3v^2-19v-14=0 | | 4x^2-2x=42 | | x+4y+3Z=2 | | 2c^3+7c^2+12c-2=0 | | 3bx-5c=7bx+4c | | 3(x+18)=21-3(x+5) | | 21x^2+58xy+21y^2=0 | | 36d^2+5d-24=0 | | (4x+2)-(-2x+4)= | | 81a^2-b^2= | | 3x^2+5xy-12y^2=0 | | 14x-4y+5x-6y= | | 1-5[2-(6x-4)]= | | x^2-2xy-63y^2=0 | | 9(2x-7)=3(6x+8) | | 42x^2-47x-9=0 | | (35+p)+(2p-37)+p=538 | | x+x=119 | | 4k^2+4k+1=19(4k^2+4k+1) | | 4k^2+4k+1=17(4k^2+4k+1) | | 7.33=2(3.14)r | | v+(v-33.6)+(v+23.4)=189.6 |

Equations solver categories